Search results for "Nuclear magnetic resonance in porous media"
showing 4 items of 4 documents
Simulations of single-fluid flow in porous media
1998
Several results of lattice-gas and lattice-Boltzmann simulations of single-fluid flow in 2D and 3D porous media are discussed. Simulation results for the tortuosity, effective porosity and permeability of a 2D random porous medium are reported. A modified Kozeny–Carman law is suggested, which includes the concept of effective porosity. This law is found to fit well the simulated 2D permeabilities. The results for fluid flow through large 3D random fibre webs are also presented. The simulated permeabilities of these webs are found to be in good agreement with experimental data. The simulations also confirm that, for this kind of materials, permeability depends exponentially on porosity over…
Permeability and effective porosity of porous media
1997
The concept of permeability of porous media is discussed, and a modification of Kozeny’s permeability equation to include the effect of effective porosity is introduced. An analytical expression for the specific surface area of a system constructed of randomly placed identical obstacles with unrestricted overlap is derived, and a lattice-gas cellular automaton method is then used to simulate the dependence on porosity of permeability, tortuosity, and effective porosity for a flow of Newtonian uncompressible fluid in this two-dimensional porous substance. The simulated permeabilities can well be explained by the concept of effective porosity, and the exact form of the specific surface area. …
Transport and Relaxation Phenomena in Porous Media
2007
Nuclear Magnetic Resonance for Cultural Heritage
2007
Abstract Nuclear magnetic resonance (NMR) portable devices are now being used for nondestructive in situ analysis of water content, pore space structure and protective treatment performance in porous media in the field of cultural heritage. It is a standard procedure to invert T 1 and T 2 relaxation data of fully water-saturated samples to get “pore size” distributions, but the use of T 2 requires great caution. It is well known that dephasing effects due to water molecule diffusion in a magnetic field gradient can affect transverse relaxation data, even if the smallest experimentally available half echo time τ is used in Carr–Purcell–Meiboom–Gill experiments. When a portable single-sided N…